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The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experi-
mentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to
determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving
amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits
a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid,
instead, the parallel shear flow regime exhibited at low amplitudes �Torralba et al., Phys. Rev. E 72, 016308
�2005�� becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along
the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric
structures develop. Given that inertial effects remain negligible even at the hardest drivings �Re�10−1�, it is
the complex rheology of the fluid that is responsible for the instabilities observed. The system studied repre-
sents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in
purely parallel shear flow.
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I. INTRODUCTION

The oscillatory flow of a viscoelastic �complex� fluid is
remarkably different from that of a Newtonian �simple� fluid,
even at very low driving amplitudes. In particular, it has been
predicted theoretically �1,2� and demonstrated experimen-
tally �3� that the response of a viscoelastic fluid in a vertical
tube to an oscillatory pressure gradient—measured by the
flow velocity at the tube axis, for a given amplitude of the
pressure gradient—exhibits very large resonance peaks at
particular driving frequencies. The resonant behavior of the
viscoelastic-fluid–tube system is in striking contrast with the
purely dissipative response of a Newtonian fluid in the same
experimental conditions.

The structure of the oscillatory flow in the tube is also
much more complex for the viscoelastic fluid than for the
Newtonian one, even at very low driving amplitudes �4�. At
sufficiently low driving amplitudes �Reynolds number �Re�
�10−3� a purely parallel shear flow, with the axial symmetry
of the tube and the periodicity of the driving, is established
in both cases. However, while for the Newtonian fluid the
instantaneous velocity field has the same sign everywhere,
for the viscoelastic fluid the flow resolves into annular re-
gions of alternating upward and downward motion. These
regions are separated by quiescent boundaries �nodes of the
velocity profile in the radial direction of the tube�, where
shear stresses reach local maxima. The quiescent cylindrical
boundaries remain static, and their number increases with
increasing driving frequency, in such a way that an additional
annular region of flow is present at each new resonance fre-
quency �4�. All these features are well captured by a linear
theory based on a linear approximation of the hydrodynamic

equations, where inertial effects are neglected, and a linear
Maxwell model is used as constitutive equation of the vis-
coelastic fluid �1,3�.

The study of an oscillatory flow in a circular cross section
finds applications in several branches of technology. Oscilla-
tory flows have been proposed for stimulation of oil reser-
voirs �5�, for reducing wetting layers of viscoelastic fluids
�6�, and also for the treatment of groundwater aquifers con-
taminated by organic liquids, using elastic waves �7�. Oscil-
latory flows are also present in the circulatory and breathing
system of living creatures �8�, where it has been suggested
that the pumping frequency is selected to provide maximum
power �7�.

The aim of the present investigation is to explore experi-
mentally in which ways the basic parallel shear flow de-
scribed above becomes unstable as the fluid is subjected to a
harder oscillatory driving, by increasing the forcing ampli-
tude and/or the forcing frequency. We focus on driving fre-
quencies that correspond to either maxima or minima of the
viscoelastic fluid response. In all instances the Reynolds
number remains very small �Re�10−1�, ensuring that the
increasing complexity of the flow �in the case of the vis-
coelastic fluid� is due to the rheological properties of the
fluid, not to inertial effects. This is a natural extension of our
previous work in this field �3,4�. In all cases we analyze the
flow sufficiently far from the two ends of the system �the
piston and the free surface�. Another important motivation
comes from the fact that, although parallel shear flows of
viscoelastic fluids are acknowledged to be linearly stable �9�,
Morozov and van Saarloos have demonstrated very recently
that plane Couette flow undergoes a purely elastic subcritical
instability, by which a small finite-size perturbation is suffi-
cient to create a secondary flow �10�. Our system exhibits a
parallel shear flow, with shear stresses accumulating near the
quiescent cylindrical boundaries, and as such it is a promis-
ing candidate to exhibit a similar kind of nonlinear elastic
instability.
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II. EXPERIMENT

In this section we review briefly our experimental setup,
the properties of the fluids considered, and the measurement
techniques used.

The experimental device �Fig. 1� consists of a vertical
cylinder made of transparent acrylic, of inner radius a
=25 mm and height 500 mm, filled with the test fluid. In
order to avoid optical aberrations, this cylinder is placed in-
side a second recipient of transparent acrylic, of square sec-
tion, filled with glycerol to match the refractive index of the
acrylic walls. A Teflon piston at the bottom end of the cylin-
der, driven by a motor of variable frequency, produces har-
monic oscillations of the pressure gradient in the liquid col-
umn. The amplitude of the oscillation can be modified by
changing the eccentricity of the driving wheel. Amplitudes of
0.8, 1.2, 1.6, 2.0, and 2.5 �±0.05� mm have been studied.

We have chosen a silicone oil of nominal dynamic viscos-
ity �=56 Pa s and density �=973 kg/m3, at the working
temperature of 25±0.5 °C, as Newtonian fluid. The vis-
coelastic fluid is an aqueous solution of cetylpyridinium
chloride �CPyCl� 100 mM and sodium salicylate �NaSal�

60 mM. In a range of concentrations, including the 100-60
considered here, this surfactant solution forms wormlike mi-
celles and exhibits the rheological behavior of a linear Max-
well fluid �11,12�. In our case the solution has dynamic vis-
cosity �=60 Pa s, density �=1050 kg/m3, and Maxwell
relaxation time tm=1.9 s, at the working temperature of
25±0.5 °C. At high shear rates ��̇�0.1 s−1� the fluid exhib-
its shear thinning �13�.

The velocity fields in a vertical plane, along the symmetry
axis of the tube, have been measured by two-dimensional
�2D� particle image velocimetry �PIV� �14�. The fluid is
seeded with Dantec 20 �m polyamide spheres. Dual-pulsed
neodymium-doped yttrium aluminum garnet �Nd:YAG� la-
sers are used to illuminate the interrogation plane, of about
1 mm thickness. Two consecutive frames, one corresponding
to each laser light pulse, are recorded with a digital camera
�spatial resolution 1008	1016 pixels�, at an acquisition rate
of 15 pairs of images per second �15 Hz�. The velocity maps
are obtained by data postprocessing, measuring the statistical
displacement of the seeding particles in the fluid in the time
interval between two consecutive laser pulses, using the
Dantec FLOW MAP software.

Our measurements have been performed in an interroga-
tion plane of 50	50 mm2, at about 250 mm �five tube di-
ameters� from the neutral position of the piston. This dis-
tance is large enough to ensure that the flow in the
interrogation plane does not feel the proximity of the piston.
By covering the fluid surface at the top end of the tube with
a cover lid, we have verified that oscillations of the free
surface do not have any measurable effect on the flow in the
region of interest.

The 2D PIV technique provides only the two in-plane
components of the actual 3D velocity field in the interroga-
tion plane, in a vertical section of the tube. This information
is complete only if the velocity field is contained within the
interrogation plane and the flow is axisymmetric. We inves-
tigate whether this is the case in our experiments by check-
ing whether the velocity field in the interrogation plane sat-

isfies �� ·v� =0 �within experimental error�, meaning that the
velocity component perpendicular to the interrogation plane

is negligible. The background �zero� level of �� ·v� is deter-
mined by the laminar base flow, for which the radial and
azimuthal components of v� are 0 and the vertical component
of v� depends only on the radius.

TABLE I. Summary of PIV results for the 100:60 CPyCl-NaSal solution. z0 and 
 are driving amplitude and frequency. At each driving
frequency, the behavior of the dynamic response of the viscoelastic-fluid–tube system and the number of internal nodes observed in the
laminar regime �away from the tube wall� are also indicated. Vortex-s and vortex-ns indicate symmetric and nonsymmetric vortices,
respectively.

z0 �mm� 0.8 1.2 1.6 2.0 2.5

Dynamic response Internal nodes 
 �Hz� Flow structure

Maximum 0 2.0 Laminar Laminar Laminar Laminar Laminar

Minimum 0 3.5 Laminar Laminar Laminar Laminar Laminar

Maximum 2 6.5 Laminar Fluctuating laminar Vortex-s Vortex-s Vortex-ns

Minimum 2 8.2 Laminar Vortex-s Vortex-s Vortex-ns Vortex-ns

Maximum 4 10.5 Laminar Fluctuating laminar Vortex-s Vortex-ns Vortex-ns

Minimum 4 11.5 Laminar Vortex-s Vortex-s Vortex-ns Vortex-ns

FIG. 1. Schematic view of the experimental device, including
the setup for particle image velocimetry �PIV� measurements.
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Wormlike micellar solutions are known to be birefringent.
A number of authors have used this property to visualize the
stress field in flows of these non-Newtonian fluids �15,16�. In
our case, since the light sheet of the interrogation plane is
already polarized, it suffices to place a polarizer on the front
wall of the acrylic box containing the tube. The state of
repose is chosen as reference state to set the orientation of
the polarizer. Birefringence measurements have been ac-
quired at a sampling rate of one image every 2.667 s. Quali-
tative representations of the stress field in the flow have been
obtained in this way, and compared to their velocity field
counterparts.

III. RESULTS

The oscillating flow in the tube has been studied at driv-
ing frequencies that coincide with either the first three
maxima in the dynamic response of the complex-fluid–tube
system �first three resonance frequencies�, 2.0, 6.5, and
10.5�±0.1�Hz, or the first three minima, 3.5, 8.2, and
11.5�±0.1�Hz �4�.

The PIV measurements of the Newtonian fluid show that
the flow remains laminar in the whole range of driving pa-
rameters explored in the present investigation. The results
are presented in Sec. III A 1. This is not the case for the
viscoelastic fluid. Table I provides a summary of the flow
structures observed at different values of the driving param-
eters. Laminar flows are described in Sec. III A 2, and more
complex flows in Sec. III B.

The PIV acquisition rate is very low compared to the
driving frequency. Actually, we cannot acquire a significant
number of image pairs in a single oscillation period for any
of the driving frequencies. In practice, we acquire pairs of
images at the maximum affordable rate. We fold PIV mea-
surements back to the first period during data postprocessing.
This strategy optimizes the temporal resolution of our ex-
periments within a driving period, assuming that the flow
follows exactly the periodicity of the driving �see the discus-
sion in Sec. III C 1� and it has been adopted in all the mea-
surements presented below.

The relevant dimensionless numbers that characterize the
flow at given driving amplitude and frequency are the fol-
lowing.

Reynolds number. The Reynolds number measures the ra-
tio of inertial to viscous forces. In our system Re can be
defined as Re=�2�
z0a /�, where 
 and z0 are the driving
frequency and amplitude. For the values of 
 and z0 explored
in the present experiments Re is very small, in the range 4
	10−3 to 8	10−2, ensuring that inertia is not responsible for
the destabilization of the basic flow. If the decrease in � due
to shear thinning is taken into account, Re increases by about
two orders of magnitude, but remains much smaller than the
critical value for which the oscillatory flow of a Newtonian
fluid would become unstable �17�.

Stokes parameter. For an oscillatory viscous flow in a
tube, the Stokes parameter ��� measures the ratio of the tube
radius to the viscous penetration depth �=a /
, where 


=�� / ���
� �17�. For all the experiments reported here �

�2, which means that all the flow is influenced by the tube
wall, i.e., viscous oscillatory boundary layers occupy all the
tube.

Deborah number. For a viscoelastic fluid, the relative im-
portance of the relaxation time of the fluid to the time scale
of the flow is measured by the Deborah number De
= tm� / �a2��. In our case De=174�1, so that elasticity of the
viscoelastic fluid is important enough for resonances to oc-
cur. The decrease in � due to shear thinning still leads to a
minimum De�1. It is also worth noting that, if the frequen-
cies are made dimensionless in the form 2�
�, where the
characteristic time �=102/5tm

�1/De, the dimensionless reso-
nance frequencies become universal, i.e., independent of
fluid parameters and system dimensions �1�.

Weissenberg number. The Weissenberg �Wi� number is
the ratio of the relaxation time of the fluid to a characteristic
inverse shear rate, Wi= tm�̇, where the shear rate gives the
relative velocity of two fluid layers moving with respect to
each other. A value Wi�1 indicates that elastic stresses be-
come large. Thus, the onset of elastic instability of a basic
laminar flow is characterized by a critical Wi �9,18�. We
define the characteristic shear rate as the ratio between the
velocity of the piston and the distance rq between the tube
axis and the first quiescent point of the flow �4�:
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FIG. 2. Silicone oil: PIV results for 
=8.2 Hz and z0=1.2 mm
�Re=3	10−2�. Top: velocity vector field. Bottom: azimuthal vor-
ticity contours. The corresponding scales are given by the little
arrow and the gray level scale at the bottom of the figure.
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FIG. 3. 100:60 CPyCl-NaSal solution: PIV results for 

=2.0 Hz and z0=0.8 mm �Re=4	10−3, Wi=0.8�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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For the experiments reported here, Wi takes values between
0.7 and 60.

A. Basic flow

Our PIV measurements of the basic �laminar� flow, for
both silicone oil and the 100:60 CPyCl-NaSal aqueous solu-
tion, are presented here. The behavior for a driving ampli-
tude z0=0.8 mm and 
=2.0,6.5,10.0 Hz has already been
described in detail in Ref. �4� and reviewed in the Introduc-
tion. We focus therefore on new results for other frequencies
at the same amplitude, and for higher amplitudes. It is im-
portant to notice that the viscosity of the silicone oil is very
similar to the viscosity of the surfactant solution, so that the
main difference between both fluids is the elasticity of the
surfactant solution. The following figures represent the flow
at time phases 0, T /4, T /2, 3T /4, and T.

1. Newtonian fluid: Silicone oil

For the Newtonian fluid, silicone oil, the flow remains
laminar at all the amplitudes and frequencies explored in the
present investigation.

Figure 2 presents the velocity vector field for a driving
amplitude of 1.2 mm and a driving frequency of 8.2 Hz. The
results show that a parallel shear flow is established. The
fluid oscillates in the tube following the periodicity of the
driving. All fluid elements in the interrogation plane move
instantaneously in the same direction, the velocity approach-
ing zero near the tube boundaries.

Our experimental results show that this laminar flow is
always stable for all the frequencies explored and up to a
driving amplitude of 10 mm.

2. Viscoelastic fluid: 100:60 CPyCl-NaSal aqueous solution

As discussed in the Introduction, the basic �laminar� flow
of the viscoelastic fluid consists of annular regions of alter-
nating upward and downward motion, separated by quiescent
boundaries �4�. Shear stresses concentrate at these quiescent
boundaries and increase as the magnitude of the driving in-
creases.

According to Table I, the viscoelastic flow remains lami-
nar at all amplitudes for the two lower driving frequencies
explored, 2.0 and 3.5 Hz. Figures 3–6 show our results for
the two extreme driving amplitudes 0.8 and 2.5 mm. This
observation is related to the fact that the number of annular
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FIG. 4. 100:60 CPyCl-NaSal solution: PIV results for 

=2.0 Hz and z0=2.5 mm �Re=10−2, Wi=2.4�. Top: velocity vector
field. Bottom: azimuthal vorticity contours. The corresponding
scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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FIG. 5. 100:60 CPyCl-NaSal solution: PIV results for 

=3.5 Hz and z0=0.8 mm �Re=8	10−3, Wi=1.3�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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FIG. 6. 100:60 CPyCl-NaSal solution: PIV results for 

=3.5 Hz and z0=2.5 mm �Re=2	10−2, Wi=4.2�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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FIG. 7. 100:60 CPyCl-NaSal solution: PIV results for 

=8.2 Hz and z0=0.8 mm �Re=2	10−2, Wi=12.8�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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regions does not depend on driving amplitude, as predicted
by a linear theory valid at low driving amplitudes �4�.

The number of alternating annular regions increases with
driving frequency. At a driving amplitude of 0.8 mm, how-
ever, the flow remains laminar at all frequencies. Results for
the resonance frequencies 6.5 and 10.5 Hz were already pre-
sented in Ref. �4�. Results for the frequencies 8.2 and
11.5 Hz �minima of the dynamic response� are shown in
Figs. 7 and 8.

The azimuthal vorticity contours reveal that the vorticity,
as expected, concentrates at the vertical lines where the flow
is quiescent. These are cuts of the actual cylindrical vortex
sheets associated with the quiescent cylindrical boundaries.

B. Flow instabilities

Table I shows that the viscoelastic flow becomes unstable
at 
=6.5 Hz �second resonance frequency�, z0=1.2 mm, and
at all higher frequencies and amplitudes.

At the onset of instability �
=6.5 Hz, z0=1.2 mm� the
laminar flow exhibits modulations of the vertical streamlines,
already visible in Fig. 9. At 
=10.5 Hz, z0=1.2 mm, i.e., at
the next resonance frequency and same amplitude, another

annular region has formed �two new nodes�, and modulations
of the vertical streamlines are also observed.

Interestingly, at the intermediate frequency 
=8.2 Hz and
at the same amplitude z0=1.2 mm, the flow presents two
stationary symmetric vortices �vortex-s� �Fig. 10�. The two
vortices are centered at the two nodes of the base flow closer
to the tube axis, and change their rotation direction every
half period of the driving.

By taking low-resolution PIV measurements in a larger
image area, we have found that several equidistant toroidal
vortices form along the tube, with a center-to-center separa-
tion of about 2.5 tube radius for a forcing frequency of
8.2 Hz, and of 1.25 tube radius for a forcing frequency of
11.5 Hz. Figure 11 shows an example.

The cylindrical symmetry of the flow is still preserved at
the onset of instability. This has been verified by repeating
the measurements several times from the state of repose.
Therefore Fig. 10 is actually showing a transverse cut of a
toroidal vortex around the symmetry axis of the tube. This is
also true for the experiments at a driving amplitude of
1.6 mm �Figs. 12 and 13�, and for the experiment at 6.5 Hz
and 2.0 mm �Fig. 14�.

For stationary symmetric vortices the radial coordinate of
the vortex center is independent of driving amplitude �Fig.
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FIG. 8. 100:60 CPyCl-NaSal solution: PIV results for 

=11.5 Hz and z0=0.8 mm �Re=3	10−2, Wi=18.6�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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15� but strongly dependent on driving frequency. As the driv-
ing frequency is increased the vortex center approaches the
center of the tube, following the behavior of the quiescent
flow points �Fig. 15�. It is also interesting to notice that the
presence of these symmetric vortices does not modify the
location of the quiescent flow points.

As the driving increases further, the vortices get distorted
and lead to more complex nonsymmetric structures �vortex-
ns�. At forcings of 2.0 mm, 8.2 �Fig. 16�, 10.5, and 11.5 Hz,
and at forcings of 2.5 mm, 8.2 Hz the vortices form very
close to the tube axis and are heavily distorted, but their
center does not move in time. At this same amplitude
�2.5 mm� and at forcing frequencies of 6.5, 10.5, and
11.5 Hz, we observe nonsymmetric and nonstationary vorti-
ces. Figure 17 shows that the flow loses its axial symmetry
and, furthermore, the non-negligible magnitude of the local
divergence at the vortices reveals that the velocity field at the
vortices presents an azimuthal component.

C. Velocity fluctuations

An integrated �global� measure of the destabilization of
the basic laminar flow is given by the rms fluctuations of the
r and z components of the velocity along the vertical direc-

tion. For convenience, we use Cartesian coordinates vx and
vy. We define

�vx
�x,t� =� 1

N
�

i

�vx�x,yi,t� − vx�x,t��2, �2�

�vy
�x,t� =� 1

N
�

i

�vy�x,yi,t� − vy�x,t��2, �3�

where vx�x , t� and vy�x , t� are the velocity components aver-
aged along the vertical �y� direction and N is the number of
velocity measurements in the image plane along the vertical
direction. Although the magnitude of �vy

is usually higher
than �vx

, both magnitudes behave very similarly. Finally, to
make the rms fluctuations comparable for different magni-
tudes of the forcing we make them dimensionless in the form
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FIG. 12. 100:60 CPyCl-NaSal solution: PIV results for 

=6.5 Hz and z0=1.6 mm �Re=3	10−2, Wi=15.1�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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FIG. 13. 100:60 CPyCl-NaSal solution: PIV results for 

=8.2 Hz and z0=1.6 mm �Re=4	10−2, Wi=25.7�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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FIG. 14. 100:60 CPyCl-NaSal solution: PIV results for 

=6.5 Hz and z0=2.0 mm �Re=4	10−2, Wi=18.9�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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FIG. 15. Location of the quiescent flow points along the radial
coordinate x �solid lines�, and minima of the permeability �dashed
horizontal lines�, as derived from a linear theory. The parameters �,
�, and tm used to calculate the diagram are those given for CPyCl-
NaSal 100:60 in the text, and the radius of the cylinder is a
=25 mm. The different symbols �experimental data� give the radial
location of the quiescent points of the flow, for z0=0.8 mm ���; the
maxima of the vorticity closer to the center of the tube, for z0

=0.8 mm ���; the vortex center, for z0=1.2 mm ��� and z0

=1.6 mm ���.
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�̃vx
�x,t� =

�vx
�x,t�

2�
z0
, �4�

�̃vy
�x,t� =

�vy
�x,t�

2�
z0
. �5�

1. Space averages

The time dependence of the velocity fluctuations is com-
puted by averaging �̃vx

�x , t� and �̃vy
�x , t� along the radial

direction x.
If a velocity component follows the periodicity of the

driving, its rms fluctuations are periodic as well, with a fre-
quency two times the driving frequency. This is visible in
Fig. 18, which shows the x-averaged rms fluctuations of the
y component of the velocity vs time, �̃vy

�t�, for the viscoelas-
tic fluid driven at 8.2 Hz. The correlation between adjacent

points validates the procedure of folding the PIV data back to
the first oscillation period, thus confirming that even this
nonlaminar flow follows the periodicity of the basic flow. We
must say that for a forcing frequency of 10.5 Hz the corre-
lation between adjacent points is worse than the correlation
observed at other frequencies.

2. Time averages

The spatial dependence of the velocity fluctuations is
computed by averaging �̃vx

�x , t� and �̃vy
�x , t� in a time pe-
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FIG. 16. 100:60 CPyCl-NaSal solution: PIV results for 

=8.2 Hz and z0=2.0 mm �Re=5	10−2, Wi=32.1�. Top: velocity
vector field. Bottom: azimuthal vorticity contours. The correspond-
ing scales are given by the little arrow and the gray level scale at the
bottom of the figure.
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=6.5 Hz and z0=2.5 mm �Re=4	10−2, Wi=40.1�. Top: local di-
vergence. Middle: velocity vector field. Bottom: azimuthal vorticity
contours. The corresponding scales are given by the little arrow and
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FIG. 18. 100:60 CPyCl-NaSal solution: x-averaged rms fluctua-
tions of the y component of the velocity as a function of time,
�̃vy

�t�, for the viscoelastic fluid driven at 8.2 Hz and amplitudes
z0=0.8 ���, z0=1.6 ���, and 2.0 mm ���.
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FIG. 19. 100:60 CPyCl-NaSal solution: time-averaged rms fluc-
tuations of the y component of the velocity, �̃vy

�x�, as a function of
the radial coordinate x for the viscoelastic fluid driven at an ampli-
tude �a� 0.8, �b� 1.2, and �c� 1.6 mm. The symbols correspond to the
different driving frequencies �in Hz� 2.0 ���, 3.5 ���, 6.5 ���, 8.2
���, 10.5 ���, and 11.5 ���. Notice the different magnitude of the
vertical scales.
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riod. Figure 19 shows the latter result, �̃vy
�x�, for different

driving amplitudes.
At the lowest driving amplitude, 0.8 mm �Fig. 19�a��, for

which the flow is always laminar, �̃vy
�x� is nearly structure-

less and has a small magnitude at all driving frequencies.
Fluctuations are slightly larger for the weakest forcing, sim-
ply because of the experimental uncertainty in the velocity
measurements. At 1.2 mm �Fig. 19�b�� �̃vy

�x� is still very
small for the two lowest frequencies �laminar flow�; for the
second and third resonance frequencies it has a similar value
as for 0.8 mm; for the second and third minima of the dy-
namic response, instead, it becomes large and peaked at the
tube axis. Finally, at 1.6 mm �Fig. 19�c�� �̃vy

�x� exhibits
similar trends as at the previous driving amplitude for the
three highest driving frequencies.

The time-averaged rms fluctuations of the velocity can
also be integrated in space, to obtain a global magnitude �̃vy

,
which behaves as an “order parameter” for the instability.
The corresponding control parameter should be the Weissen-
berg number, given the elastic nature of the instability. How-
ever, since we are driving the flow at periods much shorter
than tm �the relaxation time of the fluid� the driving period
�1/
� is possibly a more relevant time scale for the formation
of the vortices than tm. Considering this, we define a dimen-
sionless control parameter

� �
Wi

tm

=

2�z0

rq
. �6�

Figure 20 shows the behavior of �̃vy
as a function of � at the

different driving frequencies. The onset of a secondary flow
on top of the basic parallel shear flow is made manifest by a
noticeable increase in this magnitude as vortices develop.
Interestingly, the onset of the instability occurs at a value �
�1.

D. Birefringence measurements

We performed simultaneous PIV and qualitative birefrin-
gence measurements in our system, at forcing frequencies of
8.2 and 11.5 Hz and a forcing amplitude z0=1.2 mm. Figure

21 shows the time evolution of the stress map at 
=8.2 Hz
and z0=1.2 mm. The time phase of each image corresponds
approximately to the time phases of the velocity and vorticity
maps in Fig. 10.

Near the tube walls the stresses align vertically and are
rather large at all time phases. On the contrary, in the central
part of the flow the stress field depends strongly on the time
phase. Stresses are distributed rather inhomogeneously in the
vertical direction. Birefringent bands are wider at the center
of the vortices at time phases T /4 and 3T /4, when the vor-
ticity is large. At time phases 0, T /2, and T, when the vor-
ticity is small, the stress field relaxes and the bands break
into small birefringent zones.

IV. SUMMARY AND CONCLUSIONS

The periodic flow of a Newtonian fluid in a vertical pipe,
driven by an oscillatory pressure gradient, is stable in the
whole range of driving frequencies and amplitudes explored
in the present experiments �17�. Our experiments with sili-
cone oil show indeed that a relatively simple parallel shear
flow is established, in which all the fluid moves in the same
direction following the periodicity of the driving.

The behavior of the wormlike micellar solution CPyCl-
NaSal 100:60 mM is rather similar at low driving frequen-
cies. At higher driving frequencies, however, the laminar
base flow turns out to be unstable at increasing driving am-
plitudes.

The structure of the laminar base flow is important to the
development of the first instability. At the lowest driving
amplitudes that make the flow unstable, two symmetric vor-
tices �actually a cut of a single toroidal vortex� appear always
where the shear rate is maximum in the laminar velocity
profiles, in radial positions for which the velocity is rela-
tively low. Indeed, vortices are present only at driving fre-
quencies for which the laminar velocity profiles display al-
ternating regions of upward and downward motion. This
points to the large shear rates experienced by the fluid, at the
quiescent points of the flow, as responsible for the first insta-
bility of the laminar base flow.

Since the driving amplitude z0 in our experimental setup
cannot be modified in a continuous way, we cannot answer
the question whether the instability observed presents hyster-
esis. This information is relevant to ascertain the critical or
subcritical nature of this first bifurcation. A modification of
the setup that will allow us to modify z0 �and thus the control
parameter �� in a continuous way is currently in progress.

Elastic instabilities at very low Reynolds number have
been reported only for flows with curved streamlines. In
these flows the curvature of the streamlines gives rise to
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FIG. 20. 100:60 CPyCl-NaSal solution: space- and time-
averaged rms fluctuations of the y component of the velocity, as a
function of the dimensionless control parameter ��Wi/ tm
, at the
different driving frequencies �in Hz� 2.0 ���, 3.5 ���, 6.5 ���, 8.2
���, 10.5 ���, and 11.5 ���.
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FIG. 21. Birefringence map for 
=8.2 Hz and z0=1.2 mm.
Time phases: 0, T /4, T /2, 3T /4, and T.
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elastic normal stresses that destabilize the flow, ultimately
leading to elastic turbulence �or turbulence without inertia�
�9,19,20�. Since shear flows of viscoelastic fluids with paral-
lel streamlines do not give rise to normal stresses, it was the
common thought that this kind of flow would not undergo
elastic instabilities. However, Morozov and van Saarloos
showed theoretically that parallel shear flows of purely vis-
coelastic fluids might be nonlinearly unstable �10�. Connect-
ing with these predictions, we have presented an experimen-
tal scenario that allows the generation of parallel shear flows
with large shear rates �high Wi� at small Re. This is achieved
by the oscillatory driving, which makes the elastic properties
of the fluid very important even in the laminar regime. It is
important, however, to stress the fact that the micellar solu-
tion used in the present experiments presents shear thinning
at high shear rates ��̇�0.1 s−1� �13�. Since these shear rates
are reached in most of our measurements, we cannot rule out
that shear thinning plays a role in making the base flow
unstable. The instability in this case would not be purely
viscoelastic. We believe, however, that the essential ingredi-
ent to render the laminar flow unstable is its complex struc-
ture of alternating, stationary regions of upward and down-
ward motion, which is entirely due to the elasticity of the
fluid. More experimental work using complex fluids of dif-
ferent rheological behavior is needed to elucidate this point.

In conclusion, we have carried out PIV measurements of
an oscillatory flow in a tube for a Newtonian and a Maxwell
fluid with similar material properties. The oscillatory flow of
the Newtonian fluid is stable in the whole range of param-
eters explored. The oscillatory flow of the Maxwell fluid is
unstable at high driving frequencies, even though Re remains
very small. The first instability observed gives rise to a tor-
oidal vortex with axial symmetry and stationary. At increas-
ing driving amplitudes these simple vortices are unstable and
more complex structures are found. These results are poten-
tially relevant in the search for experimental observations of
a subcritical instability in parallel viscoelastic shear flows.
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